The Formation of 2D Hexagonal Boron Nitride Encircled Granular FePt-L10 Film

Monday, October 20, 2025: 2:50 PM
Prof. Jian-Gang (Jimmy) Zhu, ABB Professor of Engineering , Carnegie Mellon University, Pittsburgh, PA
In this paper, we present an experimental study of L10-FePt granular films with crystalline boron nitride (BN) grain boundary materials for heat assisted magnetic recording (HAMR). It is found that application of a RF substrate bias (VDC = - 15 V) yields the formation of hexagonal boron nitride (h-BN) nanosheets in grain boundaries, facilitating the columnar growth of FePt grains during sputtering at high temperatures. The h-BN monolayers conform to the side surfaces of columnar FePt grains, completely encircling individual FePt grains. The resulting core–shell FePt-(h-BN) nanostructures appear to be highly promising for HAMR application. The high thermal stability of h-BN grain boundaries allows the deposition temperature to be as high as 650℃ such that high order parameters of FePt L10 phase have been obtained. For the fabricated FePt-(h-BN) thin film, excellent granular microstructure with FePt grains of 6.5 nm in diameter and 11.5 nm in height has been achieved along with good magnetic hysteresis properties.