Artificial Intelligence in Metallography

Wednesday, October 22, 2025: 1:00 PM-3:00 PM
331BC (Huntington Place)
1:00 PM
Advancing AI-Driven Microstructure Analysis through Correlative Microscopy Approaches
Mr. Martin Müller, Material Engineering Center Saarland; Mr. Björn-Ivo Bachmann, Materials Engineering Center Saarland; Dr. Dominik Britz, Material Engineering Center Saarland; Prof. Frank Mücklich, Material Engineering Center Saarland
1:40 PM
Deep learning microstructure identification and 3D finite element modeling of the mechanical behavior of nodular and gray cast iron.
Prof. Marco F. Leon, Institute for Energy and Materials Research, Universidad San Francisco de Quito; Prof. Miryan Lorena Bejarano, Institute for Energy and Materials Research, Universidad San Francisco de Quito; Mr. Carlos Jarrin, Institute for Energy and Materials Research, Universidad San Francisco de Quito; Mr. Sebastian Isuasti, Institute for Energy and Materials Research, Universidad San Francisco de Quito; Mr. Westly Castro, Institute for Energy and Materials Research, Universidad San Francisco de Quito; Maria Gracia Velez, Institute for Energy and Materials Research, Universidad San Francisco de Quito; Jackson Alcivar, Institute for Energy and Materials Research, Universidad San Francisco de Quito; Ms. Krutskaya Irene Yepez, Alberta Next-Gen AM, University of Alberta; Prof. Alfredo Valarezo, Institute for Energy and Materials Research, Universidad San Francisco de Quito
2:00 PM
State-of-the-art imaging using spatially varying elasticity
Mr. Thomas Ales, Iowa State University; Dr. Peter Collins, Iowa State University
2:40 PM
Deep Learning Enabled In-Situ Mechanical Characterization for Rapid 3D X-ray Microscopy
Dr. Nathan S. Johnson, Carl Zeiss X-ray Microscopy; Dr. Kaushik Yanamandra, Ph.D., Carl Zeiss X-ray Microscopy; Dr. Orion Kafka, National Institute of Standards and Technology; Dr. Newell Moser, National Institute of Standards and Technology