Room Temperature Impact Consolidation Phenomenon for Advanced Ceramic Coating - Aerosol Deposition (AD) Method

Sunday, May 26, 2019: 14:00
Conference Center/Main Hall (Pacifico Yokohama)
Dr. Jun Akedo , National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
Coating processes that are thought to utilize purely collision pressure or impact force such as aerosol deposition (AD) method and cold spray (CS) method are attracting attention. These accelerate microparticles and ultrafine particles by carry gas to several hundred m / sec or more, make them into a jet stream and collide with the substrate, realize dense coating with good adhesion just by supplying purely mechanical energy. It is thought that fine particles of metals and ceramics are macroscopically bonded at room temperature while remaining in a nearly solid state. In fact, it has been confirmed that, in the aerosol deposition method, it is possible to form a dense ceramic thin film or a thick film having a microcrystal structure of several tens of nanometers or less at room temperature and to obtain excellent electromechanical properties. Then, in the field of semiconductor manufacturing equipment, it has been commercialized as an important coating process. This is called "Room Temperature Impact Consolidation (RTIC)". When viewed as a powder forming process, this phenomenon is fundamentally different from a thermal spray coating and shock compaction in which raw material particles are brought into a molten or semi-molten state to obtain bonding between primary particles.
See more of: Keynote Presentations
See more of: Plenary